Cluster Cosmology in the Next Decade: Systematics

Eli Rykoff
SLAC

Snowmass on the Mississippi
July 30th, 2013

w/ Eduardo Rozo and many others

Outline

- What can clusters do?
- Advantages of using clusters to probe growth of structure
- Systematics
 - WL mass calibration
 - Galaxy colors + photo-z biases
 - Cluster centering
 - Modeling uncertainties

What Can Clusters Do?

- Excellent probes of Growth of Structure
- Clusters can falsify DE + GR

How Does it Work?

- Measure abundance function as function of mass and redshift
- Compare to geometric probes (SN, BAO, etc.)
- Voila!

• If only life were so easy...

Cluster Advantages

- Very massive ("the most massive gravitationally bound structures in the Universe")
 - Majority of signal comes from relatively low-mass clusters
- Rich in galaxies and observables
 - Optical galaxy counting + precise photo-zs
 - Spectroscopy
 - WL shear of background galaxies
 - X-ray measurements
 - SZ detections

Cluster Systematics

- #I: Mass Measurements
 - Require 2% mass precision for Stage IV for 0.9% precision in σ_8
 - Can WL shear-based masses achieve this?
 - Shear biases (easier than cosmic shear)
 - Photo-z biases in background galaxies
 - Spectroscopic cross-correlation helps
- Note that currently ~7% mass calibration is achieved, but 20% offsets between different analyses!

Optical Systematics

- But that's not all...
- How do you measure galaxy colors?
 - This is not a settled question
 - Bright galaxies/faint galaxies
 - Color gradients
 - Different seeing in different bands
 - Kolmogorov (FWHM ~ $\lambda^{-0.2}$)
 - Bands taken in dark/bright time will be correlated based on obs. time
 - 1% relative photometry yes...how far down can we push this?
 - Extensive LSST sim work

SDSS Relative Colors

SDSS Relative Colors

Optical Systematics

- Galactic Reddening
 - An incorrect reddening law creates photo-z biases (significant in SDSS!)
 - Uncertainties in the amplitude of the reddening correction may wash out faint signals (Cunha+2013)
 - Do we require full spectroscopic coverage?

Optical Systematics

- Cluster Centering (optical + SZ clusters)
 - WL mass measurements require tangential shear around a center
 - Where is the halo center? What about merging systems?
 - X-ray data can calibrate systematic
 - Can it be controlled at the sub-percent level?

X-Ray

- Hydrostatic mass bias uncertainty
 - 0%, 10%, 20%, 40% biases have all been claimed in the literature, via both theory and observations
 - Other cross-calibration (Chandra vs XMM) issues are still present
 - WL mass calibration helps
- X-ray masses remain the lowest scatter mass proxies (even if biased)
- Key part of any multi-wavelength cluster analysis

Modeling Systematics

- Analyses up to now have used a simple lognormal powerlaw model (w/ covariance) for all scaling relations
 - Add in projection effects into model (near term)
 - Is the shape of richness-mass relation truly log-normal? How does it evolve with redshift? What astrophysics impact this?
 - High resolution X-ray studies